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Originality-Significance Statement 

Time-series studies provide insight into how various elements of an ecosystem are connected and 
the scales on which they naturally vary. We used a sub-weekly, 18-month time-series of the 
microbial community (assessed via flow cytometry and 16S rRNA gene sequences) alongside 
many other ecological data in nearshore Southern California to assess drivers of variability in the 
microbial community utilizing multiple bioinformatic tools. We clearly demonstrated that 
nearshore Southern California possesses cohesive units of microorganisms that vary 
seasonally—something that has been demonstrated previously in other ecosystems. However, 
one particular method showed that a minority group of microorganisms that did not follow a 
seasonal pattern responded quickly to all influxes of photosynthetic matter, demonstrating that 
ecologically important groups can turnover rapidly and may never be a dominant cohort.  

  



Summary 

A multitude of concurrent biological and physical processes contribute to microbial community 
turnover, especially in highly dynamic coastal environments. Characterizing what factors 
contribute most to shifts in microbial community structure and the specific organisms that 
correlate with changes in the products of photosynthesis improves our understanding of 
nearshore microbial ecosystem functions. We conducted high frequency sampling in nearshore 
Southern California in order to capture sub-weekly microbial community dynamics. Microbial 
communities were characterized by flow cytometry and 16S rRNA gene sequencing, and placed 
in the context of physicochemical parameters. Within our time-series season and nutrient 
availability corresponded to changes in dominant microbial community members. Concurrent 
aseasonal drivers with overlapping scales of variability were also apparent when we used 
network analysis to assess the microbial community as subsets of the whole. Our analyses 
revealed the microbial community as a mosaic, with overlapping groups of taxa that varied on 
different timescales and correlated with unique abiotic and biotic factors. Specifically, a 
subnetwork associated with chlorophyll a exhibited rapid turnover, indicating that ecologically 
important subsets of the microbial community can change on timescales different than and in 
response to factors other than those that govern turnover of most members of the assemblage.   



Introduction  

Marine microbes respond to high and low-frequency variations in the marine 

environment with shifts in abundance and community structure that have implications for 

ecosystem function. Shifts in the microbial community are particularly pronounced in highly 

dynamic nearshore environments, with large variations in both abiotic and biotic variables that 

are a function of concurrent processes acting across many different spatial and temporal scales 

(Blain et al., 2004; Martin-Platero et al., 2018; Cocquempot et al., 2019). These include purely 

physical processes such as tides, advection, and vertical mixing, as well as biological processes 

such as primary production and grazing. The microbial community is part of this changing 

seascape, with microbes both responding to and affecting change in their surroundings 

(Needham et al., 2018; Wilson et al., 2018; Wilson et al., 2020).  

Improvements in the temporal frequency, extent, and analysis of microbial time-series 

allow us to assess variations in the microbial community that result from the balance of 

concurrent drivers at a range of temporal scales. These include climate trends, seasonality, 

interactions, and various high-frequency drivers of change. Seasonal environmental variables 

have been shown to be important in shaping the microbial community during long-term monthly 

time-series in many marine environments (Gilbert et al., 2012; Giovannoni and Vergin, 2012; 

Chow et al., 2013). Higher frequency regular (e.g., tide) and sporadic fluctuations (e.g., storm 

surge and phytoplankton blooms), however, drive substantial variability in coastal systems 

leading to shifts in microbial community structure and ecological function (Martin-Platero et al., 

2018; Needham et al., 2018). Indeed, Hatosy et al. (2013) found that at least 73% of variability in 

bacterial community structure occurred at intraseasonal temporal scales and both Lindh et al. 

(2015) and Lambert et al. (2019) showed that greater temporal variability and succession exists 



in addition to a slower seasonal shift in the microbial community. These studies demonstrate that 

both short-term episodic events and long-term seasonal changes are important in structuring the 

microbial community. 

The Ellen Browning Scripps Pier (Scripps Pier) is located within the well-studied and 

highly variable Southern California Bight ecosystem (Di Lorenzo, 2003; Tai and Palenik, 2009; 

Tai et al., 2011; McGowan et al., 2017; Nagarkar et al., 2018) and home to the Scripps 

Ecological Observatory (SEO). This dynamic environment is often influenced by the adjacent 

California Current ecosystem, with offshore upwelling typically occurring in summer months 

(Bakun, 1973). The combination of environmental and biological variation in the area provides 

an ideal framework in which to assess the scales of variation that affect and are affected by the 

microbial community. Specifically, we combined twice-weekly observations of the microbial 

community with environmental and biological parameters measured by the National Oceanic and 

Atmospheric Administration (NOAA) and the Southern California Coastal Ocean Observing 

System (SCCOOS) to assess seasonal vs. intraseasonal variation in the microbial community 

according to key ecological drivers. Microbial community observations consisted of flow 

cytometry-based abundances of autofluorescent (AF) and SYBR-Green I (SG)-stained 

populations and 16S rRNA gene sequences to evaluate microbial community structure. Microbial 

community structure characterization at the community level (whole community segmentation) 

and community subsets (subnetworks) allowed us to assess how different components of the 

microbial community were affected by various drivers. We expected to observe recurrent 

seasonal communities in addition to short-term variations driven by both regular (e.g., tide) and 

sporadic (e.g., winds, advection, phytoplankton, etc.) processes. 

Results  



Environmental variation 

 Daily averages of temperature, salinity, water level (measured via hydrostatic pressure 

and indicative of tidal height), wind-speed, wind direction (Fig. S1), and nutrients (Fig. 1A and 

B) displayed seasonal and daily variation. A 29-day running temperature average was used to 

eliminate tidal effects and is indicative of season while temperature, salinity, and water depth at 

sample time (10:00 AM) were used to indicate short-term environmental drivers. Temperature 

varied seasonally and with water level (tide), reaching a daily average maximum on 9 August 

2018 of 25.9 ⁰C and a minimum on  23 March 2018 of 13.8 ⁰C  (Fig. S1A and C). Salinity and 

water level also each expressed seasonality (reaching maxima in summer for salinity and winter 

for water level) in addition to monthly and daily variations (Fig. S1B and C). Wind-speed was 

generally more variable during winter months while wind direction primarily originated from the 

west during late spring, summer, and fall, and occasionally originated from the east during 

winter and early spring months (Fig. S1D and E). All nutrients peaked in the spring of 2018 

except for ammonium, which peaked in late-winter 2019 (Fig. 1A and 1B). Finally, chlorophyll 

a, phaeophytin, and the microscopic counts of diatoms and dinoflagellates showed periodic and 

often overlapping peaks (Fig. 1C and D). Chlorophyll a and phaeophytin followed the spring and 

fall bloom pattern (Kim et al., 2009) in 2018 while a bioluminescent red-tide caused a massive 

chlorophyll a and dinoflagellate peak in June of 2019 (Fig. 1C and D). 

Variations and correlations in autofluorescent (AF) and SYBR Green 1 (SG)-stained populations 

 All AF and SG-stained populations showed variation over the 14 months during which 

flow cytometry data were collected (Fig. 1E and F). In total, five distinct AF populations were 

observed, representing large eukaryotes, small eukaryotes, two Cyanobacterial groups (1 and 2), 

and an unknown/detrital group (Fig. 1E). SG-stained populations were classified into three 



populations based on cell size (large, small, and other) (Fig. 1F). Smaller AF cells possessed 

higher overall abundances and peaked in fall for Cyanobacteria 1 and spring and early summer 

for Cyanobacteria 2, with a dip in both populations in February/March when eukaryotic AF size 

classes (which peaked during various spring months) were elevated. Many AF and SG-stained 

populations positively correlated with one another according to Pearson’s correlation coefficient 

(at a Holm-Bonferroni corrected significance of p ≤ 0.00027; Fig. S2A). For example, all AF 

eukaryotic and Cyanobacteria populations were positively correlated with one another (r = 0.36 – 

0.55) and all AF populations except Cyanobacteria 1 were positively correlated with the SG-

stained small population (r = 0.44 – 0.64). Meanwhile, the AF Cyanobacteria 1 population was 

positively correlated with the SG-stained large population (r = 0.48).  

 Many of the AF and SG-stained populations correlated with ecological variables 

according to the same corrected p-value (Fig. S2B). For example, season (the 29-day running 

temperature average) negatively correlated with the AF small eukaryotic and SG-stained small 

populations (r = −0.34 – −0.53). Additionally, phosphate concentration positively correlated with 

the AF small eukaryotic population, the natural log of chlorophyll a positively correlated with 

the AF large eukaryotic population, and the SG-stained small population positively correlated 

with silicate, the natural log of chlorophyll a, and dinoflagellates (r = 0.38 – 0.54). 

Microbial community variation and correlations  

 We next assessed the microbial community via analysis of 16S rRNA gene sequences. 

Sequencing produced 2,750,003 copy number corrected reads (with a mean library size of 19,928 

± 12,368) across 138 sampling days. These 16S rRNA gene sequences include both prokaryotes 

and chloroplasts as both are functionally important parts of the microbial community. We refer 

to both as photosynthesizers. Following Bowman et al. (2017), bi-weekly sequence data were 



first assessed at the whole community level using a self-organizing map (SOM; Fig 2A). The 

SOM reduced the multidimensional taxonomic dataset to a single categorical variable termed 

“taxonomic mode” (TM) that represented the community type for a given date. The 5 TMs 

demonstrated clear seasonality: the “fall/winter” TM appeared during fall and winter (from 

October through January), the “transition” TM appeared for a brief period in winter and early-

spring (from January to early-March), the “spring” TM appeared in the spring (from late-

February or April through June), the “summer” TM appeared in summer and early-fall (from 

late-June through early-October), and the “winter/spring” TM appeared in winter and spring 

(from January or February through April) (Table 1; Fig. 3A). 

Tukey’s honest significant difference (HSD) also demonstrated that modes differed with 

respect to several environmental, biochemical, and biological variables. These included seasonal 

environmental variables such as temperature at sample time (the “summer” TM correlated with 

highest temperatures and the “transition” and “winter/spring” TMs correlated with lowest 

temperatures), hydrostatic pressure (tide or water level) at sample time (the “spring” and 

“winter/spring” TMs correlated with lower tides), and wind direction (the “spring” and 

“summer” TMs were associated with westerly winds) (Fig. 2 B-E). Tukey’s HSD also noted 

significant differences between modes according to several nutrients and metrics of the 

phytoplankton community (Table 1; Fig. S3 and S4). In particular, the “spring” TM had a 

significantly higher mean than most other TMs for many of the variables tested (nitrite, 

phosphate, silicate, chlorophyll a, phaeophytin, total phytoplankton, diversity [inverse Simpson 

Index], most AF size classes, diatom abundance, dinoflagellate abundance, and the SG-stained 

small population). It is important to note, however, that the “spring” TM did not always have the 

highest concentration/abundance for a given variable. For example, the “winter/spring” TM had 



a significantly higher phosphate concentration and the “fall/winter” and “transition” TMs had a 

significantly higher diversity than the “spring” TM (Table 1; Fig. S3 and S4).  

 Following Wilson et al. (2018), we next used weighted gene correlation network analysis 

(WGCNA) to relate subsets (or subnetworks) of co-occurring microbial taxa to environmental, 

biogeochemical, and biological variables. The two distinct methods used (SOM and WGCNA) 

work to assess the microbial community in different but complementary ways and reflect 

sample-centric and taxon-centric approaches. While a SOM sorts entire samples into categorical 

community types that can be related to environmental data, WGCNA identifies co-occurring 

microbes throughout the dataset allowing for the coexistence of multiple subnetworks. If 

minority taxa follow the trends of dominant taxa (which will drive a new SOM type) then the 

two methods will give the same result. Additionally, WGCNA subnetworks are related to 

environmental data via the first principal component of a subnetwork’s expression (abundance) 

matrix, meaning that WGCNA is not dependent on categorical statistical methods. WGCNA 

identified a total of 7 different subnetworks that varied on both seasonal and non-seasonal 

timescales (Fig. 3B). Subnetworks also showed varying degrees of correlation with ecological 

variables (at a Holm-Bonferroni corrected significance of p ≤ 0.00030; Fig. 4) and taxa within 

each subnetwork were sorted according to importance or module membership (MM; an MM 

value close to 1 means a taxon was present and abundant when the subnetwork was prevalent) 

for further investigation (Table S1).  

 The dominant subnetwork during summer 2018 transitioned from an “early-summer” to a 

“late-summer” subnetwork in August. Both subnetworks positively correlated with water 

temperature at sample time (ρ = 0.77) and the SG-stained large population (ρ = 0.41 – 0.42). 

They also both negatively correlated with nitrate, ammonium, phosphate, silicate, phaeophytin, 



AF detrital/unknown cells, AF small eukaryotes, and SG-stained small cells (ρ = −0.77 – −0.35). 

In addition to timing, the two summer subnetworks differed in the strength of correlations with 

the above variables and based on differences with respect to key functional taxonomic groups. 

For example, using the paprica pipeline (Bowman and Ducklow, 2015; 

https://github.com/bowmanjeffs/paprica) and the Ribosomal Database Project (RDP) online 

classifier (Wang et al., 2007) we identified 28% (paprica) to 33% (RDP) of amplicon sequence 

variants (ASVs) within the “early-summer” subnetwork as photosynthetic (Table S1). However, 

when we restricted ourselves to top ASVs (MM > 0.50) this increased to 56% (both paprica and 

RDP). By comparison only 16% (paprica and RDP) of ASVs within the “late-summer” 

subnetwork were identified as photosynthetic, with 11% (paprica and RDP) of top ASVs 

representing photosynthetic groups (Table S1). Other microbial groups differed between the two 

subnetworks as well. For examples, the “late-summer” subnetwork possessed more 

Flavobacteriales both overall (18% vs. 10% according to paprica and 15% vs. 7% according to 

RDP) and as top ASVs (22% vs. 0 according to both paprica and RDP). 

 Meanwhile, there were two main subnetworks observed throughout the non-summer 

months that overlapped with the “fall/winter” and “winter/spring” TMs (Fig. 3B), and we thus 

gave these subnetworks the same name as their corresponding modes. The “fall/winter” 

subnetwork negatively correlated with chlorophyll a, phaeophytin, diatoms, and dinoflagellates 

(ρ = −0.66 – −0.44) and positively correlated with taxon richness and diversity (inverse Simpson 

Index) (ρ = 0.60 – 0.64). This subnetwork possessed 90% (paprica) to 86% (RDP) of all 

Pelagibacterales/SAR11 in the entire dataset and 72% (paprica) to 68% (RDP) of 

Thermoplasmata in the entire dataset. Meanwhile, only 15% (paprica) to 17% (RDP) of ASVs 

were photosynthetic (Table S1). Conversely, the “winter/spring” subnetwork positively 

https://github.com/bowmanjeffs/paprica


correlated with nitrate, phosphate, and silicate (ρ = 0.40 – 0.57), and negatively correlated with 

temperature (ρ = −0.67) (Fig. 4). The “winter/spring” subnetwork also positively correlated with 

chlorophyll a, phaeophytin, diatoms, dinoflagellates, small eukaryotic and detrital/unknown AF 

populations, and SG-stained small cells (ρ = 0.33 – 0.53). Photosynthesizers increased relative to 

the “fall/winter” subnetwork as 31% (paprica) to 33% (RDP) of ASVs were classified as 

photosynthetic (Table S1). 16% (paprica) to 15% (RDP) of ASVs were identified as 

Flavobacteriales, but this number increased when only top ASVs were assessed (25% for paprica 

and 23% for RDP). Another subnetwork appeared during the period that the “winter/spring” 

subnetwork dominated (Fig. 3B). The “spring” subnetwork positively correlated with a subset of 

the variables that the “winter/spring” subnetwork also correlated with: silicate, phaeophytin, 

dinoflagellates, the large eukaryotic and Cyanobacteria 2 AF populations, and taxon richness (ρ 

= 0.30 – 0.54) (Fig. 4). However, only 18% (paprica) to 23% (RDP) of ASVs, or 17% of top 

ASVs (for both paprica and RDP) were identified as photosynthetic (Table S1). Other important 

top ASVs included Flavobacteriales (26% via paprica and 23% via RDP) and Rhodobacterales 

(6% via both paprica and RDP). 

 Finally, the “chlorophyll a associated” and “other” subnetworks did not follow clear 

seasonal patterns like the other subnetworks (Fig. 3B). Despite only possessing 19% (paprica) to 

20% (RDP) photosynthetic ASVs (9% for both paprica and RDP when restricted to top taxa), the 

“chlorophyll a associated” subnetwork correlated with chlorophyll a, dinoflagellates, the large 

eukaryotic and Cyanobacteria 2 AF populations, and the SG-stained small population (ρ = 0.38 – 

0.57) (Fig. 4). This subnetwork possessed a high proportion of Flavobacteriales (43% for both 

paprica and RDP) and Puniceicoccales (14% for both paprica and RDP) as top ASVs. The 

“chlorophyll a associated” subnetwork also synced with minor non-seasonal peaks that the 



“spring” subnetwork possessed and displayed a spike immediately following the seasonal 

“spring” subnetwork peak in 2019 when there was a bioluminescent red-tide (consisting of the 

dinoflagellate, Lingulodinium polyedrum; M. Carter, personal communication) (Fig. 3B). 

Meanwhile, the “other” subnetwork was typically one of the least abundant subnetworks with the 

exception of a brief period in the winter of 2018 (Fig. 3B). This brief spike led to it negatively 

correlating with temperature (ρ = −0.43). Due to the fact that this time period overlapped with 

the “fall/winter” subnetwork, the “other” subnetwork positively correlated with taxon richness 

and diversity (ρ = 0.55) (Fig. 4). 

Discussion 

 This work represents a unique high-frequency, long-term time-series within the nearshore 

environment of the California Bight. Through this time-series we were able to assess timescales 

of variation of the microbial community based on different flow cytometric populations (AF and 

SG-stained populations) and taxonomic groupings (segmenting based on sample similarity at the 

whole community level and grouping subsets of taxa according to co-occurrence). Similar to 

other time-series work, we noted cohesive units of the microbial community that varied both 

seasonally and intraseasonally (Lindh et al., 2015; Martin-Platero et al., 2018; Needham et al., 

2018; Lambert et al., 2019). Additionally, we were able to 1) relate microbial flow cytometric 

populations and 16S rRNA gene-based subnetworks to ecological variables, and 2) assess the 

importance of individual taxa to changes in community structure in response to environmental, 

biochemical, and biological variables. We note that relatively few flow cytometric populations 

varied with season or in response to environmental factors that varied on other timescales, 

though many correlated with one another (Fig. S2). Community segmentation with a SOM 

revealed seasonality between community types. Potential drivers for this ecological variation 



were often unclear until we assessed subsets of the entire community using WGCNA, which 

reinforced the pattern of the SOM-based TMs and also revealed less abundant groups that were 

changing on different timescales than the most abundant community members (Fig. 3).  

 Relatively few flow cytometric populations correlated with seasonal and intraseasonal 

environmental drivers because the phytoplankton community followed different patterns in 2018 

and 2019. Kim et al. (2009) noted that sea surface temperature within the Southern California 

Bight follows clear seasonality while phytoplankton blooms (measured via chlorophyll a) are 

irregular. Specifically, Kim et al. (2009) identified three possible bloom patterns (spring, spring 

and fall, or summer) and our data followed the spring and fall pattern in 2018. Meanwhile, 2019 

was dominated by a bioluminescent dinoflagellate bloom in June. SG-stained small heterotrophs 

were extremely prevalent before and during the 2019 bioluminescent bloom as various AF size 

groups peaked, suggesting that they responded rapidly to increased substrates.  

 Expanding on these relationships using 16S rRNA gene-derived community structure 

revealed seasonal variation at the whole community level (community segmentation) and both 

seasonal and intraseasonal variation in subsets of the community (WGCNA). Both methods have 

been successful at describing temporal variations in the microbial community (Bowman et al., 

2017; Wilson et al., 2018). In our dataset, the two methods agreed surprisingly well with 

persistent assemblages lasting weeks to months during particular seasons (Fig. 3). However, 

WGCNA demonstrated that many subnetworks persisted at lower abundances while the 

dominant subnetwork shifted with a distinct seasonal pattern (which caused transitions between 

TMs). Additionally, the “chlorophyll a associated” subnetwork exhibited rapid turnover in 

response to photosynthetic groups. This indicates that ecologically important subsets of the 

microbial community can change on different timescales and are driven by different factors than 



those governing turnover in the majority of the assemblage. Additionally, because WGCNA 

correlates each taxon to its subnetwork (with MM, see Results for description) we identified 

taxonomic groups that drove shifts in subnetwork abundance over time.  

 The strongly seasonal summer community/communities identified by community 

segmentation and WGCNA were distinct from all other communities and were most likely 

driven by a shift in conditions and available substrates. Growth rates tend to increase with 

increased substrate availability and temperature (Huete-Stauffer et al., 2015), something that was 

apparent in our dataset with increased cell abundances during summer months (Fig. 1E and F) 

and the correlation between both summer subnetworks and the SG-stained large population (Fig. 

4). The fact that diversity decreased for the “summer” TM (Table 1; S3I) indicates that these 

ASVs were generalists. Mou et al. (2008) noted a large number of generalist species present in a 

coastal environment and attributed this to the heterogeneity found in the composition of organic 

matter and Chen et al. (2020) found that metabolic flexibility allowed generalists to dominate 

coastal sediments that were frequently disturbed. The summer community/communities 

dominated after the spring and early-summer spike in chlorophyll a and AF populations, which 

may have provided extremely varied but labile substrates that metabolic generalists could take 

advantage of. Additionally, the bioluminescent red-tide in 2019 may have provided ample 

substrates for generalist species. Therefore, while the highest degree of physical disturbance 

occurs during winter, the variable phytoplankton blooms and grazing pressures present in the 

summer are forms of ecosystem variability that generalists would have an easier time 

acclimating to. 

 WGCNA resolved the singular summer mode into two different summer subnetworks 

that co-occurred but dominated at different times and separated based on basic life history traits. 



Members of the “early-summer” subnetwork reflected the more readily available 

resources/niches, which were utilized by the high proportion of photosynthesizers in this 

subnetwork (Table S1). Meanwhile, the “late-summer” subnetwork was characterized by 

organisms that could process the influx of organic matter from the “early-summer” subnetwork. 

In addition to possessing fewer photosynthesizers likely from different clades as the “early-

summer” subnetwork (Tai and Palenik, 2009; Tai et al., 2011; Nagarkar et al., 2020), the “late-

summer” subnetwork had a higher proportion of Flavobacteriales (Table S1). Flavobacteriales 

have been found to be important to processing polysaccharides derived from phytoplankton 

blooms (Kirchman 2002; Avci et al., 2020; Ferrer-Gonzalez et al., 2020). 

 Seasonality was also apparent in many of the non-summer TMs and subnetworks, which 

we attribute to the availability of substrates and nutrients. For example, the “fall-winter” TM and 

subnetwork dominated during winter, which is generally a less productive time (Fargion et al., 

1993; Kim et al., 2009; Nagarkar et al., 2018; Wilson et al., 2020). The decreased resources (e.g., 

nutrients) translated to lower chlorophyll a, eukaryotic phytoplankton populations, and an 

absence of large AF populations (Fig. 1A-E, 3, and 4). The fact that Pelagibacterales were most 

prevalent in the “fall/winter” TM and subnetwork reflects this limitation as Pelagibacterales are 

characterized by their small genomes, an adaptation that enables them to persist in low nutrient 

regimes (Giovannoni et al., 2005; Mende et al. 2017; Shenhav and Zeevi, 2020).  

 The increase in nutrients in the spring marked a shift to the “winter/spring” TM and 

subnetwork, with the “transition” TM marking a transitional phase when both the “fall/winter” 

and “winter/spring” subnetworks were both fairly abundant. The “winter/spring” and “transition” 

TMs and “winter/spring” subnetwork may reflect open niches that fast-growing species were 

able to exploit. This is evident in the rapid increase in abundance of many AF populations and 



smaller SG-stained cells (Fig. 1E, 1F, 4, and S4). The “winter/spring” subnetwork also had high 

rates of photosynthesizers and—as found during the productive early summer period—we 

observed a high proportion of Flavobacteriales and other groups commonly associated with 

processing primary production products. Multiple ASVs were also associated with the 

gammaproteobacterial family Halieaceae (MM = 0.73 – 0.78), for which one ASV had 100% 

similarity to a sequence (OM-RGC.v1.001592647) that was associated with high productivity in 

the Tara Ocean’s database (Villar et al., 2018). 

 Towards the end of the period when the “winter/spring” subnetwork dominated, the 

highly seasonal “spring” subnetwork peaked, though it never became dominant and appears to 

have been responding to the photosynthetic products or environmental conditions present at that 

time. This is because fewer ASVs were identified as photosynthesizers than the “winter/spring” 

or “early summer” subnetworks despite increasing light levels. However, many top members 

belonged to the orders Flavobacteriales and Rhodobacterales, which have both been identified as 

important to the processing of phytoplankton biomass and exudates (Ferrer-Gonzalez et al., 

2020). 

 WGCNA also identified intraseasonal variation in the microbial community, which 

corresponded with opportunistic non-seasonal variation in the photosynthetic community. This 

variation was not apparent in the SOM-based modes because it consisted of minor portions of the 

microbial community. Despite often low or infrequent abundances of individual microbes, these 

microbes may be extremely important to processing photosynthetically derived organic matter as 

this subnetwork correlated strongly with dinoflagellate counts and multiple AF populations 

(large eukaryotes and Cyanobacteria 2) (Fig. 4). Reinforcing this idea is the fact that this 

subnetwork had its greatest peak in June 2019 when there was a bioluminescent red-tide (Fig. 



1C, 1D, and 3B) explaining why the “chlorophyll a associated” subnetwork correlated more 

strongly with dinoflagellates and the large eukaryotic AF population than any other subnetwork. 

The idea that a few rapidly growing heterotrophs may be responsible for processing a majority of 

the labile organic matter in an area is not new (Mou et al., 2008; Gómez-Consarnau et al., 2012; 

Nelson and Weir, 2014; Pedler et al., 2014), but the idea that a cohesive group of 

microorganisms remain poised to respond to influxes of phytoplankton derived organic matter 

against a backdrop of seasonal succession in the majority fraction of the microbial community 

has not been widely demonstrated. Examples of rapidly growing copiotrophs within the 

“chlorophyll a associated” subnetwork included several taxa identified as belonging to the family 

Puniceicoccaceae (MM = 0.51 – 0.64) and many different important Flavobacteriales taxa (MM 

= 0.50 – 0.69). Puniceicoccaceae are aerobic chemoorganotrophic heterotrophs that have been 

found in a range of marine habitats (Cho et al., 2011) and, as stated before, members of 

Flavobacteriales have been found to be important to processing polysaccharides derived from 

phytoplankton blooms.  

 There were some broad-scale taxonomic distinctions between the seasonal subnetworks 

and the aseasonal “chlorophyll a associated” subnetwork that provide insight into the taxa most 

important to responding to influxes of photosynthetic derived organic matter in this system. All 

of the seasonal subnetworks but the “early-summer” subnetwork had multiple instances of both 

Rhodobacterales and Flavobacteriales as top members (MM > 0.50; according to both paprica 

and RDP), with the “early-summer” subnetwork not possessing any Flavobacteriales (Table S1). 

Conversely, the “chlorophyll a associated” subnetwork did not possess any Rhodobacterales as 

top members, but had many Flavobacteriales represented (Table S1). While both orders are 

commonly seen following phytoplankton blooms, many studies have reported a succession 



between major bacterial groups (Teeling et al., 2012; Buchan et al., 2014), with members of 

Flavobacteria identified as r-growth strategists often observed immediately following 

phytoplankton blooms and specializing in the consumption of complex organic matter (Pinhassi 

et al., 2004; Edwards et al., 2010; Gómez-Pereira et al., 2011; Thomas et al., 2011; Teeling et al., 

2012). Thus, their association with pulses of organic matter (and the “chlorophyll a associated” 

subnetwork) makes sense and provides insight into the specific taxa important to degrading 

sporadic influxes of organic matter in coastal Southern California. Meanwhile, Rhodobacterales 

are also frequently observed following phytoplankton blooms, but are thought to be important to 

the consumption of low molecular weight phytoplankton metabolites (Landa et al., 2017; Ferrer-

Gonzalez et al., 2020). Thus, they appear to be associated with seasonal primary producers that 

were present for prolonged periods of time and were part of the clear seasonal succession 

between various taxa. The specialization of various taxa furthers the idea that niche portioning 

(Teeling et al., 2012; Buchan et al., 2014; Ferrer-Gonzalez et al., 2020) is important in the 

processing of phytoplankton derived organic matter in this system.  

 Overall, the variety of microbial flow cytometric populations, SOM-based community 

types, and WGCNA-based subnetworks that were present in our time-series demonstrate that 

many different scales of variation drive shifts in the microbial community within nearshore 

coastal California. Our overall findings are in general agreement with previous work that found 

both seasonal and intraseasonal variation in cohesive units of the microbial community in 

dynamic marine environments (Lindh et al., 2015; Martin-Platero et al., 2018; Needham et al., 

2018; Lambert et al., 2019). Within our time-series, season was the dominant factor that drove 

changes in interacting groups of microorganisms whose members often represented the most 

abundant taxa. Both whole community segmentation and subnetwork analysis picked up on this 



level of variation. It should also be noted that while these dominant microbial cohorts follow a 

clear seasonal pattern, it remains to be shown if there are additional patterns according to 

interdecadal or multi-year modulation. For example, the timing of transitions may shift or 

additional subnetworks/community types may appear during El Niño years—something that will 

be resolved in the future from the ongoing SEO time-series. Regardless, associations between the 

microbial community and certain ecological factors (i.e. those involving primary producers), and 

the succession in the summer community, were not as apparent at the whole community level. 

The correlation between a minority subnetwork (the “chlorophyll a associated” subnetwork) and 

opportunistic primary producers shows that there are differential drivers with overlapping scales 

of variability for the microbial community. It also shows that the microbial community can 

display rapid turnover in response to ecological stimuli, but that not all members of the 

community will respond similarly. These results reinforce the use of a SOM for identifying large 

scale seasonal changes in the microbial community in dynamic environments, but also indicate 

that potentially ecologically important subsets of the microbial community can change on 

different scales.  

Experimental Procedures  

Sample Collection 

 All data were collected from the Ellen Browning Scripps Pier in San Diego, CA 

(32.8663° N, 117.2546° W) from 4 January 2018 through 6 June 2019. SEO 

(www.ecoobs.ucsd.edu) conducts bi-weekly analysis of the microbial community in conjunction 

with the SCCOOS Scripps Pier Shore Station sampling effort. For each sampling, surface water 

was collected using a bucket off the Scripps Pier at approximately 10:00 AM and transferred to 

acid washed containers that were brought back to the laboratory for immediate analysis. Bi-

http://www.ecoobs.ucsd.edu/


weekly concentrations of nutrients, chlorophyll a, and phaeophytin, and weekly counts of 

diatoms, dinoflagellates, and total phytoplankton were provided by SCCOOS 

(https://sccoos.org/) and the McGowan Plankton and Chlorophyll Program (see, Wilson et al., 

2020 for methods). Continuous temperature, water depth (hydrostatic pressure), and salinity at 

Scripps Pier were provided by the SCCOOS Automated Shore Station Program 

(https://erddap.sccoos.org/erddap/tabledap/autoss.html). Meteorological data were provided by 

the NOAA station LJAC1 (https://www.ndbc.noaa.gov). Bacterial and archaeal community 

structure was determined through analysis of the 16S rRNA gene, while flow cytometry was 

used to quantify cells belonging to different AF and SG-stained populations. 

DNA Collection & Bioinformatics  

Seawater was filtered through a sterile 0.2 µm Supor membrane disc filter (Pall 

Corporation, Port Washington, NY, USA) and stored at −80 ºC until extraction. Through 8 

January 2019, filters were extracted manually using the MoBio DNEASY PowerWater Kit 

(Qiagen, Venlo, Netherlands), after which point filters were extracted using the KingFisherTM 

Flex Purification System and MagMax Microbiome Ultra Nucleic Acid Extraction kit 

(ThermoFisher Scientific, Waltham, Massachusetts, USA). Extracted DNA was sent to Argonne 

National Laboratory for amplicon library preparation and sequencing using the Illumina MiSeq 

platform, universal primers 515F and (modified) 806R (Walters et al., 2016), and 2 x 151 bp 

library architecture. Reads were filtered, denoised, and merged with dada2 (Callahan et al., 

2016). Merged reads were analyzed with paprica v0.7.0 (Bowman and Ducklow, 2015; 

https://github.com/bowmanjeffs/paprica) and Ribosomal Database Project (RDP) online 

classifier (Wang et al., 2007; version 11) to determine the community structure. Paprica utilizes 

phylogenetic placement (Barbera et al., 2019) to place query reads on a reference tree 

https://sccoos.org/
https://www.ndbc.noaa.gov/
https://github.com/bowmanjeffs/paprica


constructed from the full-length 16S or 18S rRNA genes from all completed genomes in 

GenBank. All unique reads were assigned to internal branches or terminal branches on the 

reference tree. Sequences were submitted to NCBI SRA at BioProject PRJNA662174. Diversity 

was calculated for each sample using the inverse Simpson Index. 

Flow cytometry  

Flow cytometry samples were aliquoted into 3 mL sample tubes and fixed (final 

concentration 2% HCHO before 7 January 2019, or 0.25% glutaraldehyde after) before running 

on a CyFlow Space (Sysmex America Inc., Lincolnshire, IL, USA). Fluorescent signals of 

AF (unstained) samples were measured for forward scatter, side scatter, FL 1 (em. 536 nm), FL 2 

(em. 590 nm), FL 3 (em. 675 nm), and FL 4 (em. 748 nm) for excitation with a 488 nm laser, FL 

5 (em. 455 nm) for excitation with the 405 nm laser, and FL 6 (em. 675 nm) for excitation with 

the 638 nm laser. Duplicate samples were stained with SG (Molecular Probes Inc., Eugene, OR, 

USA) prior to analysis. Absolute cell counts were determined by spiking a standard volume of 

1:10 diluted 123-count beads (ThermoFisher, Waltham, Massachusetts, USA) to each sample 

and blank.  

 Subgroups were identified using a SOM from forward scatter, side scatter, and FL 2 – FL 

6 for AF communities, and from forward scatter, side scatter, FL 1, and FL 5 for SG-stained 

communities following Bowman et al. (2017) (Fig. 1E and F) This analysis was conducted using 

the ‘kohonen’ package in R (Wehrens and Kruisselbrink, 2018). In brief, a training set was 

constructed by randomly sampling 50 events from each sample (10,600 total events). These data 

were trained using a toroidal map grid of size 41 x 41. Populations were identified using k-means 

clustering (AF k = 6, SG-stained k=3) with k chosen through the visual evaluation of a within-

cluster sum of squares scree plot and a priori knowledge of populations.  



Determination of taxonomic modes and subnetworks 

Following Bowman et al. (2017), a SOM was used to reduce the multidimensional 

taxonomic dataset to a single categorical variable for each date (‘kohonen’ package in R version 

3.0.8; Wehrens and Kruisselbrink, 2018). We input a Hellinger-transformed relative abundance 

matrix of all 6,102 unique reads across 130 of the 138 days (days that had > 5,000 reads). During 

SOM training we varied the SOM map units between grids sized 5x5 to 9x9 and settled on a 7x7 

toroidal grid based on the distribution of the number of samples (130 days) assigned to each map 

unit 1000 times (Fig. 2A). K-means clustering was used to segment map units into TMs, with 

final k selected based on a within-clusters sum of squares scree plot and experimentally varying 

k around the perceived optimum before settling on the final segments. The resulting TMs were 

related to environmental variables and different AF and SG-stained populations using analysis of 

variance (ANOVA) and Tukey’s HSD test (‘stats’ package in R version 3.5.1; R Core Team, 

2018) to assess whether the means for each variable were statistically different for various TMs. 

Following Wilson et al. (2018), WGCNA was used to relate subnetworks of microbial 

taxa to environmental and ecological data and to different AF and SG-stained populations 

(‘WGCNA’ package in R version 1.68; Langfelder and Horvath, 2007, 2008). WGCNA assesses 

the co-occurrence of taxa via an adjacency function that factors in the degree of shared neighbors 

between two taxa magnified by a power-law function so that the topology of the graph becomes 

scale-free. After taxa are sorted into subnetworks, the co-occurrence profiles for each 

subnetwork (i.e. the first principal component of that subnetwork) are then related to variables. 

We again used a Hellinger-transformed relative abundance matrix (that factored in all 6,102 

unique taxa across all 138 days) and then limited the matrix to the 1,541 most abundant taxa 

(1,512 Bacteria and 29 Archaea) so that the topology overlap measure (TOM) would fit. We 



utilized a signed adjacency matrix and selected a soft thresholding power of 7 which gave an r2 

of 0.959 for the TOM model fit and a mean connectivity between taxa of 22.6. We set our 

minimum module (subnetwork) size to 50. The co-occurrence expression profiles for each 

subnetwork were then related to other variables using the first principal component of that 

subnetwork by way of a Spearman Rank Correlation. 
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Table 1) Environmental and biological characteristics of self-organizing map (SOM)-based 
taxonomic modes. See Fig. 2 for SOM grid and Fig. S3 and 4 for visualization of these 
characteristics. 

Fig. 1) Time-series of bi-weekly sampled concentrations for A) nitrate (dark green triangles), 
nitrite (green circles), B) ammonium (orange squares), phosphate (purple circles), silicate (red 
triangles), C) chlorophyll a (light green diamonds), and phaeophytin (dark green circles). D) 
Time-series of the abundances of once weekly measured diatoms (blue triangles) and 
dinoflagellates (green circles). Timeseries of bi-weekly sampled E) autofluorescent (AF) 
populations (detrital/unknown in red, large eukaryotes in orange, small eukaryotes in green, 
Cyanobacteria 1 in blue, and Cyanobacteria 2 in purple) and F) SYBR-Green 1 (SG)-stained 
large (black), small (brown), and other (grey) populations. A and E insets show flow cytometric 
populations (selected via a self-organizing map—see methods) on 2 August 2018 for AF 
populations and on 13 December 2018 for SG-stained populations. Flow cytometry analyses 
began in May of 2018 while all other time-series began in January 2018. 

Fig. 2) Self-organizing map (SOM) analysis development and comparison of taxonomic modes 
(TMs) with environmental variables. A) SOM grid (7x7) with samples (dots) sorted into different 
map units. K-means clustering partitioned map units into like TMs, shown by both the color of 
the map unit and the thick lines surrounding groups of map units. The map was arranged as a 
toroid, so units on opposite sides of the grid are touching. B) Temperature at sample time for 
each TM (seasonal temperature was similar). C) Hydrostatic pressure at sample time for each 
TM. D) Daily average wind speed for each TM. E) Daily average wind direction for each TM. 
For each boxplot, the horizontal line represents the median (and is colored according to the TM it 
belongs to), the grey box spans the first quartile to the third quartile, the whiskers show the 
maximum and minimum, and any dots represent outliers. Tukey’s HSD found differences in the 
means for temperature at sample time between all TMs except for the “fall/winter” vs. the 
“spring” TMs and between the “transition” vs. the “winter/spring” TMs; hydrostatic pressure at 
sample time between the “fall/winter” vs. the “spring” and “winter/spring” TMs, between the 
“transition” vs. the “spring” and “winter/spring” TMs, and between the “spring” vs. the 
“summer” TMs; and for daily average wind direction between the “spring” and “summer” vs. all 
other TMs. There were no significant differences between the means for wind speed. 

Fig. 3) Time-series of the microbial community using different methods. A) Time-series of 
taxonomic modes (TMs) identified using a self-organizing map (SOM) on all 6,102 Hellinger 
Transformed 16S rRNA sequences (whole community segmentation). B) Time-series of 
abundances of subnetworks selected via weighted gene correlation network analysis (WGCNA) 
on Hellinger Transformed relative abundances of the 1,541 most abundant 16S rRNA sequences 
when the miniature module size was set at 50. Only taxa that had a p-value of ≤ 0.05 were 
summed to create the WGCNA time-series.  



Fig. 4) Spearman Rank correlations relating untransformed ecological variables to the 
“eigengene” (first principal component of the expression matrix) of each weighted gene 
correlation network analysis (WGCNA) subnetwork found at a miniature module size of 50. 
Positive relationships are in red and negative relationships are in blue. The top number is the ρ 
value and the number in parentheses is the p-value for each relationship. Daily average 
temperature, hydrostatic pressure (tidal height), and salinity behaved similarly to variables at 10 
AM and so were not included. Autofluorescent (AF) and SYBR-Green I (SG)-stained 
populations were identified using flow cytometry and a self-organizing map.  

Fig. S1) A) Time-series of the daily average temperature (blue), temperature at 10:00 AM (red), 
and the 29-day average temperature (indicative of season; black). B) Time-series of the daily 
average salinity (blue), salinity at 10:00 AM (red), and the daily average temperature (black). C) 
Time-series of the daily average hydrostatic pressure (blue), pressure at 10:00 AM (red), and the 
daily average temperature (black). D) Time-series of the daily average wind speed (blue) and the 
daily average temperature (black). E) Time-series of the daily average wind direction (blue) and 
the daily average temperature (black). 

Fig. S2) Pearson Rank correlations between flow cytometry autofluorescent (AF) populations 
and SYBR-Green I (SG)-stained populations vs. A) other flow cytometry populations and B) 
abiotic environmental data, nutrients, ln chlorophyll a, ln phaeophytin, diatoms, and 
dinoflagellates. Daily average temperature behaved similarly to the 29-day average (seasonal) 
and 10 AM sampled water temperature and so was not included. Positive relationships are in red 
and negative relationships are in blue. The top number is ρ and the number in parentheses is the 
p-value for each relationship. Only significant relationships are shown, with a significance 
threshold of p ≤ 0.00027 selected based on a Bonferroni correction. 

Fig. S3) Concentration/count ranges for the different taxonomic modes (TM) identified using a 
self-organizing map (7x7; see Fig 2A) according to A) nitrate, B) nitrite, C) ammonium, D) 
phosphate, E) silicate, F) ln chlorophyll a, G) ln phaeophytin, H) total phytoplankton, and I) the 
inverse Simpson’s diversity index. All variables were measured twice a week except for total 
phytoplankton, which was enumerated weekly. For each boxplot, the horizontal line represents 
the median (and is colored according to the TM it belongs to), the grey box spans the first 
quartile to the third quartile, the whiskers show the maximum and minimum, and any dots 
represent outliers. Tukey’s HSD found differences in the means for nitrate between the 
“summer” vs. the “winter/spring” TMs; nitrite between the “spring” vs. the “fall/winter” and 
“transition” TMs; ammonium between the “summer” vs. the “winter/spring” TMs; phosphate 
between the “summer” vs. all other TMs and also between the “winter/spring” vs. the 
“fall/winter” and “spring” TMs; silicate between the “spring” vs. all other TMs and also between 
the “summer” vs. the “winter/spring” TMs; ln chlorophyll a concentration between the “spring” 
vs. all other TMs and also between the “fall/winter” vs. the “summer” and “winter/spring” TMs; 
ln phaeophytin concentration between the “spring” vs. all other TMs except the “winter/spring” 
TM and also between the “winter/spring” vs. the “fall/winter” and “summer” TMs; total 
phytoplankton count between the “fall/winter” vs. the “spring” TMs; and diversity between the 
“fall/winter” vs. all other TMs except the “transition” TM, between the “transition” vs. the 
“spring” and “summer” TMs, and also between the “summer” vs. the “winter/spring” TMs. 



Fig. S4) Count ranges for flow cytometric determined autofluorescent (AF) populations (A-E), 
microscopically determined F) total diatoms, G) total dinoflagellates, and flow cytometric 
determined SYBR-Green I (SG)-stained cells (H, I) for the different taxonomic modes identified 
using a self-organizing map (7x7; see Fig 2A). Total diatoms and dinoflagellates were 
enumerated weekly while all flow cytometry counts took place twice a week. For each boxplot, 
the horizontal line represents the median (and is colored according to the TM it belongs to), the 
grey box spans the first quartile to the third quartile, the whiskers show the maximum and 
minimum, and any dots represent outliers. Tukey’s HSD found differences in the means for the 
AF detrital/unknown population between the “fall/winter” vs. the “winter/spring” TMs and also 
between the “summer” vs. the “spring” and “winter/spring” TMs; the AF large eukaryote 
population between the “spring” vs. all other TMs; the AF small eukaryote population between 
the “summer” vs. all other TMs except the “transition” TM and also between the ”spring” vs. the 
“winter/spring” TMs; the AF Cyanobacteria 2 population between the “spring” vs. all other TMs; 
the total diatom abundance between the “fall/winter” vs. the “winter/spring” TMs; the total 
dinoflagellate abundance between the “spring” vs. the “fall/winter” and “summer” TMs; and the 
SG-stained small population between the “spring” vs. the “fall/winter” and “summer” TMs and 
also between the “winter/spring” vs. the “fall/winter” and “summer” TMs. There were no 
significant differences between the means for the other variables. Unshown are the TMs 
according to the SG-stained other population, which had no significant differences between the 
TM means.  
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*The classification listed is the finest scale that agreed between paprica and RDP 

  Taxonomic Mode 

Fall/Winter Transition Spring Summer Winter/Spring 

Observed Fall/Winter Winter Spring Summer/Early Fall Winter/Spring 

Nutrient 
Characteristics Low nitrite 

Low nitrite and 
high phosphate 

High nitrite and 
silicate 

Low nitrate, 
ammonium, 
phosphate, and silicate 

High nitrate, 
ammonium, and 
phosphate 

Phytoplankton 
Characteristics 

Low chlorophyll a, 
phaeophytin, 
diatoms, and 
dinoflagellates 

Low chlorophyll a, 
phaeophytin, and 
dinoflagellates 

High chlorophyll a, 
phaeophytin, and 
dinoflagellates 

Low phaeophytin and 
dinoflagellates 

High diatoms and 
low dinoflagellates 

Diversity 
Characteristics High diversity High diversity Medium diversity Low diversity Medium diversity 

AF Population 
Characteristics 

 

High 
unknown/detrital 
and low large 
eukaryotic 
populations 

High large 
eukaryotic and 
Cyanobacteria 2 
populations 

Low small eukaryotic 
population 

High 
unknown/detrital 
and small 
eukaryotic 
populations 

SG-Stained 
Population 

Characteristics 
  

High small cell 
population 

 

High small cell 
population 

ID of Average 
Top  

16S rRNA 
Gene 

Sequences 
(Hellinger 

Transformed 
Relative 

Abundance)* 

Candidatus Pelagibacter  
(0.31 ± 0.04) 
Candidatus Pelagibacter  
(0.20 ± 0.03) 
Candidatus Pelagibacter  
(0.19 ± 0.03) 
Candidatus Pelagibacter  
(0.18 ± 0.02) 
Cyanobacteria/Chloroplast 
(0.16 ± 0.03) 

Cyanobacteria/Chloroplast 
(0.23 ± 0.06) 
Candidatus Pelagibacter  
(0.22 ± 0.05) 
Unidentified 
Rhodobacteraceae 
(0.20 ± 0.04) 
Unidentified 
Acidimicrobiales 
(0.19 ± 0.04) 
Unidentified 
Rhodobacteraceae 
(0.18 ± 0.03) 
 

Candidatus Pelagibacter 
(0.32 ± 0.07) 
Cyanobacteria/Chloroplast 
(0.21 ± 0.06) 
Cyanobacteria/Chloroplast 
(0.20 ± 0.05) 
Unidentified 
Acidimicrobiales 
(0.20 ± 0.08) 
Unidentified 
Alphaproteobacterium 
(0.19 ± 0.03) 
 

Unidentified Rhodobacteraceae 
 (0.35 ± 0.09) 
Candidatus Pelagibacter 
(0.23 ± 0.07) 
Cyanobacteria/Chloroplast 
(0.16 ± 0.07) 
Cyanobacteria/Chloroplast 
(0.15± 0.05) 
Unidentified Rhodobacteraceae 
(0.15 ± 0.02) 

Candidatus Pelagibacter  
(0.27 ± 0.06) 
Unidentified  
Gammaproteobacteria 
(0.21 ± 0.04) 
Unidentified 
Rhodobacteraceae 
(0.20 ± 0.06) 
Unidentified 
Rhodobacteraceae 
(0.19 ± 0.05) 
Cyanobacteria/Chloroplast 
(0.17 ± 0.06) 




